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Purpose:  In  this  paper  we have  evaluated  the  gene  expression  programming  (GEP)  methodology  for  mod-
eling the effect  of  different  variables  (continuous  and  nominal)  and their  interactions  on  the  properties
of  direct  compression  formulations.
Methods:  The  effect  of  four  variables  was  studied;  variety  of  diluents,  type  and  percentage  of  drug  and
maximum  compression  force,  on  the mechanical  and  drug  release  properties  of  direct  compression
tablets.  The  generated  database  (36 formulations)  was  used  for mathematical  and  GEP modeling.
Results:  GEP  has  been  shown  to  have a high  accuracy  in prediction  for four  out  five  outputs  studied
including  friability  which  had no  replicate  measurements.  Compared  to  the  traditional  statistical  treat-
ment GEP  is  less  time  consuming  and  gives  equations  which  are extremely  helpful  in  understanding  the
esponse Surface Methodology interactions  of  the  different  variables  and  for  establishing  the  design  space  in the  development  of  direct
compression  formulations.
Conclusions:  GEP  allows  similar  conclusions  than traditional  statistical  treatment.  The  helpfulness  of  this
methodology  in  establishing  the design  space  has  been  demonstrated.  The  knowledge  derived  from  GEP
can easily  be  increased  by  including  additional  information  or new  inputs,  such  as  additional  drugs  or
combinations  of  excipients  in the  data  set.
. Introduction

In 2002, the FDA announced a new initiative (cGMPs for the 21st
entury: A risk-Based Approach) intending to modernize its regu-
ations of pharmaceutical quality for human drugs and establishing

 new regulatory framework focused on quality by design (QbD),
isk management, and quality systems (FDA, 2003; Jiang and Yu,
009).
The International Conference on Harmonization guideline (ICH
8) states that QbD is a systemic approach to development that

tarts predefining objectives and emphasizes product and process

Abbreviations: FDA, Food and Drug Administration; GMP, Good Manufacturing
ractice; QbD, quality by design; ICH, International Conference on Harmonization;
SM, Response Surface Methodology; GEP, gene expression programming; MSE,
ean Squared Error; SRM, Structural Risk Minimization; AIC, Akaike’s Informa-

ion Criteria; GCV, Generalized Cross Validation; MDL, Minimum Descriptor Length;
VC, weight variation coefficient; CS, crushing strength; F, friability; DT, disinte-

ration time; D30 min, drug dissolved after 30 min.
∗ Corresponding author at: Departamento de Farmacia y Tecnología Farmacéu-

ica, Facultad de Farmacia, Campus Vida, Universidad de Santiago de Compostela,
antiago de Compostela 15782, Spain. Tel.: +34 881815044; fax: +34 981547148.

E-mail address: m.landin@usc.es (M.  Landin).
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ttp://dx.doi.org/10.1016/j.ijpharm.2012.04.078
© 2012 Elsevier B.V. All rights reserved.

understanding and process control, based on sound science and
quality risk management. QbD requires an understanding of how
formulation and process variables influence product quality and a
definition of the design space inside the knowledge space (Garcia
et al., 2008).

ICH Q8 defines the design space as “the multidimensional com-
bination and interaction of input variables (e.g. material attributes)
and process parameters that have been demonstrated to provide
assurance of quality”. Operating within the design space is not
considered as a change in a formulation and does not require regu-
latory oversight; however, movements out of the design space are
considered changes and need regulatory approvals. This approach
should reduce cost, time and improve process efficiency and quality
of the formulations (Zomer et al., 2010). Therefore, for the phar-
maceutical industry, adopting the QbD methodology represents an
opportunity, but also a great challenge.

Response Surface Methodology (RSM) including statistical
experimental designs and multiple linear regression analysis under
a set of constrained equations is one recommended method for

establishing “the design space” with the inconvenience that nomi-
nal factors cannot be included in those designs (Lunney et al., 2008).
In those cases, a valid alternative strategy would be to repeat the
response surface design for each level of the nominal factors.

dx.doi.org/10.1016/j.ijpharm.2012.04.078
http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
mailto:m.landin@usc.es
dx.doi.org/10.1016/j.ijpharm.2012.04.078
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Fig. 1. Example of genotype and phenotype of an equation by GEP.

tions of models and solutions for a specific problem); it selects
and reproduces them according to fitness, and introduces genetic
variations in one or more genetic operators simulating mutations,
6 M. Landin et al. / International Jou

In the recent years, together with traditional statistical tech-
iques, soft computing methods, such as neural networks, fuzzy

ogic and genetic algorithms, are being introduced offering novel
olutions of improving control and modeling in pharmaceutics
Colbourn and Rowe, 2009). There are many examples in the
iterature about the use of neural networks in modeling and opti-

izing processes and formulation parameters (Ibrić et al., 2003;
ubramanian et al., 2004; Arulsudar et al., 2005; Singh et al., 2006;
ei  et al., 2008; Ali et al., 2009; Woolfson et al., 2010). Despite its

reat utility models generated are “black box” and their interpre-
ation is not always easy, especially when the number of variables
s large.

Novel approaches such as evolutionary computing can offer
ven more possibilities and challenges. Gene expression pro-
ramming (GEP) is an extension of genetic programming, the
oft-computing method that simulates the biological evolution
rocess through an algorithm.

One important application of GEP is symbolic regression or func-
ion finding, where the goal is to find an expression (equation)
hat performs well for all fitness cases within a certain error of the
orrect value (Ferreira, 2006).

The “function finding” application of GEP can be extremely
mportant within the pharmaceutical field. In general, the rela-
ionships between response variables and causal factors are not
imple and the prediction of response variables on the basis of
athematical expressions using empirically observed values or
easurements is a common and important problem to be solved.
oreover, most data-driven systems, modeling or system iden-

ification techniques, are developed on the basis of an a priori
nown model structure and focus mainly on the calculation of the
odel parameter values (Kremer and Hancock, 2006; Siepmann

nd Siepmann, 2008). GEP is a domain-independent problem-
olving technique and its applications have not been fully explored.
owever, it has been applied successfully in solving some problems
ithin the engineering and food industry fields in the development

f new and better materials (Eskil and Kanca, 2008), the prediction
f material properties (Antoniou et al., 2010) and the improvement
f food processing (Kahyaoglu, 2008). Recently it has been applied
o modeling pharmaceutical formulations (Colbourn et al., 2011)
here the GEP approach has been compared to neural networks.

Using a desktop computer, researchers can handle by GEP, a
arge number of variables (inputs and outputs) simultaneously.
hus it can be trained with experimental data to model the inter-
ctions between inputs and outputs and obtain a function or
n equation (transparent model) relating them. Moreover, it can
e combined with other artificial intelligence techniques such as
enetic algorithms to perform optimization processes.

This paper investigates the utility of GEP methodology as a
ool to model the effect of different variables (continuous and
ominal) and their interactions on the properties of direct compres-
ion formulations. We  compare the GEP results with conventional
ethodology, ANOVA and stepwise multiple linear regression, and
e discuss the helpfulness of this methodology in establishing a
esign space within the framework of quality by design.

.1. The gene expression programming algorithm

GEP was invented by Candida Ferreira in 2001 (Ferreira, 2001).
 complete description of this algorithm and extensive literature
n the subject can be found in her book “Gene Expression Pro-
ramming: Mathematical Modeling by an Artificial Intelligence”
Ferreira, 2006).
Ferreira (2001) has proposed a new evolutionary algorithm that
volves complex computer programs (neural networks, decision
rees, polynomial constructs, mathematical or logical expressions)
nd encodes them into linear forms named chromosomes. The
linear chromosomes can also be expressed or translated into
branched structures.

The principle of genetic algorithm was developed by Koza
(1992) in the 90s. Any equation (e.g. 19 D + 280 F) can be repre-
sented by an expression tree and can also be linearized as can be
seen in Fig. 1.

In the GEP, linear structures, the chromosomes, represent the
genotype and the branched structures, the expression trees, rep-
resent the phenotype. They are different entities, structurally and
functionally, the discrimination of both, genotype and phenotype,
being the fundamental difference between GEP and other technolo-
gies like tree algorithms (Ferreira, 2001).

When using GEP, chromosomes are usually composed by more
than one gene of equal length. Every gene has a head and a tail
(Fig. 1). The head contains symbols that represent functions and
terminals, whereas the tail contains only terminals. The set of func-
tions involve any mathematical or Boolean function that the user
believes is appropriate to solve the problem (+, −, /, *, exp, etc.). The
head length (h) is chosen by the user, whereas the tail length (t) is
given by the expression:

t = (n − 1)h  + 1

where n is the number of arguments of the function with most
arguments.

Each gene is able to code expression trees (phenotypes) of dif-
ferent shapes and sizes, the simplest being composed for only one
node and the largest one composed for the number of nodes as the
length of the gene.

When modeling, GEP uses populations of individuals (popula-
transpositions or recombinations (Ferreira, 2006). The final result is
a mathematical expression or an equation that expresses the rela-
tionship between variables (inputs) and results (outputs), which
can be used to predict outcomes.
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. Materials and methods

.1. Data set

The materials used were: two microcrystalline celluloses, Avi-
el PH 101 (lot 852, C. Barcia, Spain) and Avicel PH 102 (lot 831, C.
arcia, Spain), micronized prednisone (lot 035, J. Escuder, Spain),
ydrochlorothiazide (lot 014, J. Escuder, Spain) and magnesium
tearate B.P. (lot 548, C. Barcia, Spain). Tablets were produced by
irect compression of the mixtures prepared in a Turbula T2C mixer
t 30 rpm for 15 min. In all cases, 0.5% (w/w) magnesium stearate
s the lubricant was added. For the tabletting process an eccentric
ablet machine (Korsch EKO) was used. The machine was equipped
ith 9 mm flat punches and piezoelectric transducers to measure

he upper punch compression force. The lower punch was adjusted
o produce 200 mg  tablets. The production rate was  33 tablets/min.

The database (Table 1) includes 36 formulations following a fac-
orial design for four variables: variety of microcrystalline cellulose
Avicel PH101 and Avicel PH102 with different nominal particle
ize), drug (prednisone and hydrochlorothiazide), percentage of
rug (0, 5 and 10%, w/w) and maximum compression force (900,
700 and 2500 N).

Five tablet properties were measured to access the quality of
he tablet following US Pharmacopoeia specifications: weight vari-
tion coefficient (WVC, %), crushing strength (CS, kg), friability (F,
), disintegration time (DT, s), and drug dissolved (%) after 30 min.
.2. Factorial design and multiple linear regression

Mathematical modeling was carried out to obtain a second
rder polynomial equation, introducing the terms pointed out as

able 1
ifferential characteristics of the formulations studied and mean values of the parameter

Drug Excipient % drug Compression, force (N) 

Prednisone

Avicel PH101

0 900 

0  1700 

0  2500 

5  900 

5 1700
5  2500 

10 900 

10  1700 

10  2500 

Avicel PH102

0 900 

0  1700 

0  2500 

5  900 

5  1700 

5  2500 

10  900 

10  1700 

10  2500 

HCT

Avicel PH101

0 900 

0  1700 

0  2500 

5  900 

5  1700 

5  2500 

10  900 

10  1700 

10  2500 

Avicel PH102

0 900 

0  1700 

0  2500 

5  900 

5  1700 

5 2500 

10 900 

10  1700 

10 2500 
f Pharmaceutics 434 (2012) 35– 42 37

significant by the analysis of variance corresponding to the experi-
mental design employed (Cochram and Cox, 1957) which had been
performed previously.

The magnitude of the influences of the terms with the great-
est contribution was obtained as regression equations by stepwise
multiple regression using the BMDP.P2R package (Dixon, 1983).
There were no replicate measurements for the parameters coef-
ficient of variation of weight and percentage of friability, hence
the ANOVA was  not possible and the effects of the variables were
assessed by introducing all the terms, both independently and as
interactions, into the regression.

2.3. Gene expression programming

A commercial computer program INForm v4.11, supplied by
Intelligensys Ltd., 2010, UK, was  used in this study. A separate
model was  developed for each property. The accuracy of the GEP
model is assessed using the correlation coefficient (R2) for each
output and the ANOVA parameters (f ratio, degrees of freedom).

R2 = 1 −
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − ȳi)

2

where ȳ is the mean of the dependent variable and ŷ is the predicted
value from the model.

The larger the value of the Train Set R2, the more the model
captured the variation in the training data. Values between 70 and

99.9% are indicative of reasonable model predictabilities (Colbourn
and Rowe, 2005).

Type of microcrystalline cellulose (expressed by the commercial
brand, Avicel PH 101 and Avicel PH 102), type of drug (expressed

s used to characterize them.

WVC  (%) F (%) CS (kg) DT (s) D30 min (%)

0.48 0.19 3.18 12 0.00
1.40 0.00 6.50 16 0.00
0.97 0.00 9.17 17 0.00
1.35 1.60 2.67 4 100.00
1.41 0.44 5.42 11 77.92
1.99 0.23 8.58 16 37.66
0.49 2.88 2.33 10 100.00
0.77 0.51 5.83 13 99.62
0.78 0.25 8.42 12 69.57
0.67 0.45 4.50 16 0.00
0.77 0.19 9.00 37 0.00
0.67 0.10 11.42 85 0.00
0.32 0.81 3.08 14 92.75
0.32 0.54 6.78 23 43.83
0.22 0.49 9.00 32 13.30
0.63 1.03 3.33 9 98.03
0.48 0.67 6.33 17 72.72
0.63 0.37 7.42 21 52.27

0.48 0.19 3.18 12 0.00
1.40 0.00 6.50 16 0.00
0.97 0.00 9.17 17 0.00
0.35 0.53 3.25 16 96.97
0.43 0.16 6.17 21 85.91
1.15 0.02 10.00 28 75.45
0.48 0.74 2.67 9 93.71
0.48 0.18 6.50 16 92.50
0.58 0.04 9.83 20 78.48
0.67 0.45 4.50 16 0.00
0.77 0.19 9.00 37 0.00
0.67 0.10 11.42 85 0.00
1.29 0.45 4.58 14 98.18
1.09 0.38 8.08 29 69.98
1.14 0.24 10.67 55 33.18
0.43 0.33 5.75 21 96.89
0.37 0.29 9.17 35 51.29
0.29 0.27 11.00 62 25.76
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Table 2
GEP training parameters setting with Inform v4.11 for modeling each parameter.

WVC  (%) F (%) CS (kg) DT (s) D30 min (%)

General
Number of populations 10 10 10 10 10
Population size 1000 1000 1000 1000 1000
No.  generations 1000 1000 200 200 1000
Head  length 7 7 7 7 7
No.  genes 4 4 4 4 4
Random seed 1 1 1 1 10
Fitness type MDL  SRM MDL  MDL  SRM
C1 – 1 – – 1
C2 – 4.8 – – 4.8
Node  weighting factor 0.1 0.1 0.1 0.1 0.1
Proportion of elite 0.05 0.05 0.05 0.05 0.05

Genetic operators
One point recombination 0.3
Two  point recombination 0.3
Gene  recombination 0.1
Transposition of IS 0.1
Transposition of root 0.1
Gene transposition 0.1
Mutation 2
Constants mutation 1

Using  random number constants? Yes
Function set + −/* + −/* exp + −/* + −/* + −/* exp
Input  connected

Excipient Yes
Drug Yes
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%  drug
Compression force 

y the name, prednisone and hydrochlorothiazide), percentage of
rug in the formulation (%) and compression force (N) were intro-
uced as ingredients or process conditions (inputs) and weight
ariation coefficient, crushing strength, percentage of friability, dis-
ntegration time and percentage of drug dissolved at 30 min  were
elected as properties (outputs).

INForm v4.1 contains various statistical fitness criteria includ-
ng Mean Squared Error (MSE), Structural Risk Minimization (SRM),
kaike’s Information Criteria (AIC), Generalized Cross Validation

GCV) and Minimum Descriptor Length (MDL). All were investi-
ated to obtain the model that gave the best R2, for each property
easured and additionally the simplest and statistical significant

quations. The best results for each output were found with differ-
nt training parameters which are presented in Table 2.

. Results and discussion

.1. Models predictability

Table 3 shows the GEP model equations and the correspond-
ng model statistics. It is interesting to note that the GEP approach

llows most of the outputs with a reduced number of terms to be
redicted and GEP performs well in some cases such as for the
riability parameter, which has been reported as a difficult param-
ter for obtaining good models in making predictions (Plumb et al.,

able 3
quations and statistical parameters for the derived GEP models, where E is the variety of
ormulation and F is the maximum compression force.

Outputs Model equations 

WVC  (%) = 0.52 + 0.17M + (0.02/(0.07 + E − D)) + (0.27/(6.40 − M − D + E)) 

CS (kg) = 3.72 × 10−3F − 0.4983 + ((E + 0.62)/(1.7 − E + (M × D))) 

F (%) = 19 D F−1 + 160 M D F−110−E + 280 F−1

DT (s) = 2.7 × 10−3 + D + 7.1 × 10−3 F − M D − E M D + ((E D + (0.1 E F))/(4
D30 min (%) = (EF/(4.16 D − 96)) + (0.23 F/(D − 22)) + 20.4 D + 20 + 15 E − E D −
* Not statistically significant.

** Statistically significant  ̨ < 0.01.
Yes
Yes

2005; Shao et al., 2006). Most predictions are similar or even better
than the regression equations obtained by stepwise linear regres-
sion (Landín et al., 1992, 1993).

Fig. 2 shows the correlations between experimental values
and predicted values using both GEP models and stepwise linear
regression models (Landín et al., 1992, 1993). As can be seen the
correlation coefficients are quantitatively similar or even higher for
the GEP, even for the parameter weight variation coefficient despite
the model being not statistically significant for this parameter.

3.2. Mechanical properties

As two  variables, type of drug and binder are nominal, the GEP
equations for the parameters related to the mechanical properties
of tablets (Figs. 3 and 4) allow four GEP predicted response surfaces
for crushing strength and friability to be represented.

Using the GEP equations and the 3D plots for these parameters
and interpreting both simultaneously the following features can be
easily deduced:
1. The main effect on the mechanical properties is compression
force followed by type of Avicel and percentage of drug. An
increment in compression force allows harder tablets with low
friability to be obtained.

 microcrystalline cellulose, M is the type of drug, D is the percentage of drug in the

Training R2 d.f. f ratio

68.07 22 and 35 1.24*

96.33 18 and 35 23.70**

81.58 19 and 35 3.27**

.8 + D)) 86.84 24 and 35 2.81**

 D2 91.20 26 and 35 2.25**



M.  Landin et al. / International Journal of Pharmaceutics 434 (2012) 35– 42 39

F ns (La

2

3

ig. 2. Experimental against predicted values by stepwise linear regression equatio

. Mechanical properties of Avicel PH 102 based tablets are bet-
ter than mechanical properties of Avicel PH 101 whatever the
formulated drug.

. Prednisone affects negatively tablet mechanical properties, the

percentage of drug interacting with compression force, in such
a way that for high percentages of prednisone the compression
force should be high to avoid tablets being out of USP limit for
friability (<1%), especially when Avicel PH 101 is used.
ndín et al., 1992, 1993) and GEP models for the different parameters studied.

3.3. Tablet disintegration time and drug dissolution profile

With regard to those parameters, it should be pointed out that
GEP equations include a high number of terms for both the disin-

tegration time and the percentage of drug dissolved (Table 3), but
surprisingly the type of drug is not included in the GEP equation for
D30 min. Differences in their hydrosolubility (both poorly soluble) or
their mechanisms of compression (plastic deformation or particle
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Fig. 3. Effect of percentage of drug and compression force on the crushing strength predicted by GEP.

Fig. 4. Effect of percentage of drug and compression force on the loss of weight by friability predicted by GEP.
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Fig. 5. Effect of percentage of drug and compression

ragmentation) do not explain the variability in D30 min, this being a
arameter dependent on the characteristics of the binder and other
rocess variables.

The interpretation of 3D plots (Figs. 5 and 6) allowed the deduc-
ions that:

. A linear effect of compression force on both DT and especially on
D30 min is observed.

. Avicel PH101 gives tablets of shorter disintegration time and

quicker drug release than Avicel PH102 whatever the formulated
drug.

. There is an interaction between the compression force and per-
centage of drug in the formulation. At high compression forces,

Fig. 6. Effect of percentage of drug and compression force on the
 on the tablet disintegration time predicted by GEP.

tablets, especially Avicel PH102-based ones, can be out of lim-
its for the parameter D30 min (the USP limits for D30 min are >60%
and >80% for hydrochlorothiazide and prednisone-based tablets
respectively).

The knowledge generated from GEP modeling for both param-
eters is completely in agreement with the findings generated by
the traditional approach (Landín et al., 1992, 1993). Moreover, the

GEP equations can be used to define the design space for a formu-
lation as they describe the relationships between variables. As an
example, Fig. 7 represents the superimposed contour graphs from
GEP for the parameters friability and D30 min for prednisone-Avicel

 percentage of drug dissolved at 30 min  predicted by GEP.
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ig. 7. Example of the design space predicted by GEP for prednisone-based tablets
hen Avicel 101 is used as binder (the white area represents tablets within the USP

imits; D30 min > 80% and F < 1%).

H101 based tablets. The white area represents the common region
f successful operating ranges.

. Conclusions

In this study gene expression programming technology has been
pplied within the pharmaceutical field, to a direct compression
ablet formulation data set. Results show that GEP allows similar
onclusions to the obtained traditional statistical treatment. GEP
as shown to have a high accuracy in prediction for the four out
ve outputs studied (Table 3) including one which had no replicate
easurements like friability.
GEP is less time consuming than ANOVA or stepwise linear

egression and gives equations (transparent model) which are
xtremely helpful in understanding the interactions of the different
ariables and for establishing the design space in the development
f direct compression formulations.

The knowledge derived from GEP can easily be increased by
ncluding additional information or new inputs, such as additional
rugs or combinations of excipients in the data set.
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